Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(3): 360-377, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38365970

RESUMO

Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Movimento Celular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Via de Sinalização Wnt , Transição Epitelial-Mesenquimal , Proteínas de Ligação a RNA/metabolismo
2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873142

RESUMO

According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation. Upon inflammation, PC-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in inflammatory bowel disease (IBD) patients but also of a larger fraction of sporadic colon cancers. The latter is likely due to the inflammatory consequences of Western-style dietary habits, the major colon cancer risk factor. Computational methods designed to predict the cell-of-origin of cancer confirmed that, in a substantial fraction of sporadic colon cancers the cells-of-origin are secretory lineages and not stem cells.

3.
Front Immunol ; 14: 1053920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261365

RESUMO

Background: Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation. Methods: CAFs were isolated from colon cancer liver metastases and were immortalized to prolong lifespan and improve robustness and reproducibility. Established medium and matrix compositions that support the growth of patient-derived organoids were adapted to also support CAF growth. Changes in growth pattern and cellular re-organization were assessed by confocal microscopy, live cell imaging, and immunofluorescence. Single cell RNA sequencing was used to study CAF/organoid co-culture-induced phenotypic changes in both cell types. Conditioned media were used to quantify the production of immunosuppressive factors and to assess their effect on T cell proliferation. Results: We developed a co-culture system in which colon cancer organoids and CAFs spontaneously organize into superstructures with a high capacity to contract and stiffen the extracellular matrix (ECM). CAF-produced collagen IV provided a basement membrane supporting cancer cell organization into glandular structures, reminiscent of human cancer histology. Single cell RNA sequencing analysis showed that CAFs induced a partial epithelial-to-mesenchymal-transition in a subpopulation of cancer cells, similar to what is observed in the mesenchymal-like consensus molecular subtype 4 (CMS4) colon cancer. CAFs in co-culture were characterized by high expression of ECM components, ECM-remodeling enzymes, glycolysis, hypoxia, and genes involved in immunosuppression. An expression signature derived from CAFs in co-culture identified a subpopulation of glycolytic myofibroblasts specifically residing in CMS1 and CMS4 colon cancer. Medium conditioned by co-cultures contained high levels of the immunosuppressive factors TGFß1, VEGFA and lactate, and potently inhibited T cell proliferation. Conclusion: Co-cultures of organoids and immortalized CAFs recapitulate the histological, biophysical, and immunosuppressive features of aggressive mesenchymal-like human CRC. The model can be used to study the mechanisms of immunosuppression and to test therapeutic strategies targeting the cross-talk between CAFs and cancer cells. It can be further modified to represent distinct colon cancer subtypes and (organ-specific) microenvironments.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Técnicas de Cocultura , Reprodutibilidade dos Testes , Neoplasias do Colo/patologia , Microambiente Tumoral
4.
Cell Death Dis ; 14(5): 337, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217493

RESUMO

Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.


Assuntos
MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Supressoras de Tumor , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Supressoras de Tumor/genética
5.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711533

RESUMO

Paneth cells (PCs), responsible for the secretion of antimicrobial peptides in the small intestine and for niche support to Lgr5+ crypt-base columnar stem cells (CBCs), have been shown to respond to inflammation by dedifferentiating into stem-like cells in order to sustain a regenerative response1,2. Therefore, PCs may represent the cells-of-origin of intestinal cancer in the context of inflammation. To test this hypothesis, we targeted Apc, Kras, and Tp53 mutations in Paneth cells by Cre-Lox technology and modelled inflammation by dextran sodium sulfate (DSS) administration. PC-specific loss of Apc resulted in multiple small intestinal tumors, whereas Kras or Tp53 mutations did not. Compound Apc and Kras mutations in PCs resulted in a striking increase in tumor multiplicity even in the absence of the inflammatory insult. By combining scRNAseq with lineage tracing to capture the conversion of PCs into bona fide tumor cells, we show that they progress through a "revival stem cell" (RSC) state characterized by high Clusterin (Clu) expression and Yap1 signaling, reminiscent of what has been previously observed upon irradiation of the mouse digestive tract3. Accordingly, comparison of PC- and Lgr5-derived murine intestinal tumors revealed differences related to Wnt signaling and inflammatory pathways which match the dichotomy of CBCs and injury-induced RSCs4 between human sporadic colon cancers and those arising in the context of inflammatory bowel diseases. Last, we show that western-style dietary habits, known to trigger a low-grade inflammation throughout the intestinal tract, underlie the analogous dedifferentiation of Paneth cells and their acquisition of stem-like features. Taken together, our results show that intestinal cancer arises in the context of inflammation through the dedifferentiation of committed secretory lineages such as Paneth cells and the activation of the revival stem cell state. As such, a true quiescent stem cell identity may be hidden in fully committed and postmitotic lineages which, upon inflammation, support the regenerative response by re-entering the cell cycle and dedifferentiating into RSCs. The chronic nature of the tissue insult in inflammatory bowel diseases and even in the context of western-style dietary habits is likely to result in the expansion of cell targets for tumor initiation and progression.

6.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346211

RESUMO

Phenotypic plasticity allows carcinoma cells to transiently acquire the quasi-mesenchymal features necessary to detach from the primary mass and proceed along the invasion-metastasis cascade. A broad spectrum of epigenetic mechanisms is likely to cause the epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions necessary to allow local dissemination and distant metastasis. Here, we report on the role played by alternative splicing (AS) in eliciting phenotypic plasticity in epithelial malignancies with focus on colon cancer. By taking advantage of the coexistence of subpopulations of fully epithelial (EpCAMhi) and quasi-mesenchymal and highly metastatic (EpCAMlo) cells in conventional human cancer cell lines, we here show that the differential expression of ESRP1 and other RNA-binding proteins (RBPs) downstream of the EMT master regulator ZEB1 alters the AS pattern of a broad spectrum of targets including CD44 and NUMB, thus resulting in the generation of specific isoforms functionally associated with increased invasion and metastasis. Additional functional and clinical validation studies indicate that both the newly identified RBPs and the CD44s and NUMB2/4 splicing isoforms promote local invasion and distant metastasis and are associated with poor survival in colon cancer. The systematic elucidation of the spectrum of EMT-related RBPs and AS targets in epithelial cancers, apart from the insights in the mechanisms underlying phenotypic plasticity, will lead to the identification of novel and tumor-specific therapeutic targets.


Assuntos
Processamento Alternativo , Neoplasias do Colo , Humanos , Molécula de Adesão da Célula Epitelial , Neoplasias do Colo/genética , Adaptação Fisiológica , Splicing de RNA
7.
Br J Cancer ; 127(1): 145-155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35296803

RESUMO

BACKGROUND: In colorectal cancer (CRC), the consensus molecular subtype 4 (CMS4) is associated with therapy resistance and poor prognosis. Clinical diagnosis of CMS4 is hampered by locoregional and temporal variables influencing CMS classification. Diagnostic tools that comprehensively detect CMS4 are therefore urgently needed. METHODS: To identify targets for molecular CMS4 imaging, RNA sequencing data of 3232 primary CRC patients were explored. Heterogeneity of marker expression in relation to CMS4 status was assessed by analysing 3-5 tumour regions and 91.103 single-tumour cells (7 and 29 tumours, respectively). Candidate marker expression was validated in CMS4 peritoneal metastases (PM; n = 59). Molecular imaging was performed using the 68Ga-DOTA-FAPI-46 PET tracer. RESULTS: Fibroblast activation protein (FAP) mRNA identified CMS4 with very high sensitivity and specificity (AUROC > 0.91), and was associated with significantly shorter relapse-free survival (P = 0.0038). Heterogeneous expression of FAP among and within tumour lesions correlated with CMS4 heterogeneity (AUROC = 1.00). FAP expression was homogeneously high in PM, a near-homogeneous CMS4 entity. FAPI-PET identified focal and diffuse PM that were missed using conventional imaging. Extra-peritoneal metastases displayed extensive heterogeneity of tracer uptake. CONCLUSION: FAP expression identifies CMS4 CRC. FAPI-PET may have value in the comprehensive detection of CMS4 tumours in CRC. This is especially relevant in patients with PM, for whom effective imaging tools are currently lacking.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fibroblastos/patologia , Radioisótopos de Gálio/uso terapêutico , Humanos , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons
8.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34036938

RESUMO

Phenotypic plasticity represents the most relevant hallmark of the carcinoma cell as it bestows it with the capacity of transiently altering its morphological and functional features while en route to the metastatic site. However, the study of phenotypic plasticity is hindered by the rarity of these events within primary lesions and by the lack of experimental models. Here, we identified a subpopulation of phenotypic plastic colon cancer cells: EpCAMlo cells are motile, invasive, chemo-resistant, and highly metastatic. EpCAMlo bulk and single-cell RNAseq analysis indicated (1) enhanced Wnt/ß-catenin signaling, (2) a broad spectrum of degrees of epithelial to mesenchymal transition (EMT) activation including hybrid E/M states (partial EMT) with highly plastic features, and (3) high correlation with the CMS4 subtype, accounting for colon cancer cases with poor prognosis and a pronounced stromal component. Of note, a signature of genes specifically expressed in EpCAMlo cancer cells is highly predictive of overall survival in tumors other than CMS4, thus highlighting the relevance of quasi-mesenchymal tumor cells across the spectrum of colon cancers. Enhanced Wnt and the downstream EMT activation represent key events in eliciting phenotypic plasticity along the invasive front of primary colon carcinomas. Distinct sets of epithelial and mesenchymal genes define transcriptional trajectories through which state transitions arise. pEMT cells, often earmarked by the extracellular matrix glycoprotein SPARC together with nuclear ZEB1 and ß-catenin along the invasive front of primary colon carcinomas, are predicted to represent the origin of these (de)differentiation routes through biologically distinct cellular states and to underlie the phenotypic plasticity of colon cancer cells.


Assuntos
Movimento Celular , Plasticidade Celular , Neoplasias do Colo/patologia , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Células HCT116 , Humanos , Masculino , Camundongos Endogâmicos NOD , Invasividade Neoplásica , Metástase Neoplásica , Osteonectina/genética , Osteonectina/metabolismo , Fenótipo , Via de Sinalização Wnt , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...